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This note deals with questions related to certain motions of a free gyrostat in a central
Newtonian field of forces.

Let O be the origin of a fixed Cartesian system of coordinates &, §; and & at the center
of gravitation, and let a moving system of coordinates x,, x, and %x,, with unit vectors
iy, 1,, and iy, the axes of which coincide with the principal central axes of inertia of the
gyrostat, be rigidly attached to this gyrostat. Also, in the following we shall require, an
orbital system of coordinates in the form of a trihedron, defined by the position vector of
the mass center of the system, and by the transversal and binormal to the orbit. The unit
vectors of this system will be denoted by J,, J; and j, . Finally, when analysing the motion
of a mechanical system relative to the mass center, we shall always resort to the Koenig
system of axes &, & and & .

Let 4,, A, and A, denote the principal central moments of inertia of the gyrostat
assumed to be a rigid body, andlet M be its total mass. The moment of momentum of the
gyrostat, consisting of a carrier S and gyrostatic elements g is, relative to 0, expressed
by [1]

Ko = RXMV + K, K=K;+k (32=§12+§22+§32)

Here R is the position vector of the system’s center of mass, V is its velocity,

K is the moment of momentum of the gyrostat in its motions relative to the mass center,
K, is the moment of momentum of the system considered as a single rigid body, and k is
the moment of momenta relative to S.

f @, , w, and @, are the projections of the instantaneous angular velocity vector ©
of body S on the moving axes x;, %, and %, , then the projections of vector K, on the same
axes will be 4,w,, 4;®; and 4,w,. The projections of vector k will be denoted by %,,
k, and k,.

With the above notations the equations of motion of an arbitrary gyrostat, moving in
a central Newtonian field of forces defined by function U, will be

vy _ov
I = 5% (i=123) (1.1
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4 (s — 12) gy - 0ok — ks = Ly (1.2)

The remaining two equations in each of the above groups are obtained by a cyclic
transposition of variables appearing in parantheses; L,, L, and L, denote the moments of
Newtonian forces, acting on the system, relative the respective axes.

We introduce the following notations for the direction cosines of the moving axes with
respect to the fixed axes, and to the axes of the orbital coecrdinate system

Xy Xy I3 Zy Xy I
E an g O o T Ty T
Es a1 Ogg Gy Y T Ty Tog
B @y Oz Ogy Ya Tm Tsa Tss

The cosines of the first group above are absolute, while those of the second one are
relative, and satisfy the following expressions

Ta1 == a1y % ~+ otz %-i‘-asl %' Tig == O3 % + aga%—}-a”%‘ (1.3)

Es

T3 == O3 %-{r— Uys %%“wkassjir

For the force function we have the known expression [2]

M 3 3 p A1+ A4+ A .
v=LF — 5 (ame - At dsud) + g g g (19
Then, o
L= % (As — Az) TisT12 (A1 Ay Ag; T Tis Tis)

It remains to add to the system of equations (1.1) the Poisson’s kinematic equation,
and the equations of relative motions, i.e. equations which define the mechanical aspects
of motions of the gyrostatic elements g, and thus complete the system of equations deter
mining the motion of an arbitrary gyrostat in a central Newtonian field of forces.

2. We shall consider a gyrostat of the gyroscopic type, i.e. such for which the central
ellipsoid of inertia is an ellipsoid of revolution. We denote by 4, and A, its equstorial
and axial moments ofinertia respectively.

Let the inner motion be represented by a symmetric rotor, in ateady rotation, the axis
of which is stationary with respect to the carrier S, and is directed along the axis of
symmetry of the gyrostat. There is no friction in the rotor bearinga which exercise on its
axis normal forces only,

In this case

ky = k’ = O, k3 = k == const, K = A1(°1i1 + Alﬂ)’iz + (Asﬂ)s + k) ia
The gravitational moment, created by the field, relative to the mass center is ex-

pressed by 3
L(Ly Ly, Le)= TP (As — A1) 115 (Ja X ig) (2.1

The expression ‘regular precession’ of a free gyrostat will be used here to describe amotion in

which the carrier rotates with a constant engular velocity about the axis of symmetry x,
of the gyrostat, while x; in tumn rotates with a constant angular velocity @* about another



706 N.N. Kolesnikow

axis &, passing through the cénter of the mass system, and having & fixed position in
space.

It can be shown that the moment L of external forces, provided it is not zero, and
under the condition that the gyrostat of the described kind is subject to regular precession,
must have the form

L = (H — 4, 0% co8Q;) 0* Xi, (H = A5 (@5 -+ 0* cosgy) + k = const) (2.2)

The integral H follows immediately from the third equation of the system (1.2); w* is
the angular velocity of precession, s is the inherent angular velocity of the carrier, and
@y is the angle between axis &; “and the axis of symmetry, with cosq, = ag,.

It is not difficult to conclude that the motion defined above must take place on a
circular orbit, and that the angular velocity w* of precession must coincide with the angular
velocity of the mass center along the orbit.

The stipulated expresaion for the force function U yields a non-Keplerian value of the
angular velocity, However, in the following we shall assume the mass center of the gyrostat
is moving along a Keplerian orbit, defined by (1.1), provided that the terms dependent on
the position of the body relative to the mass center are neglected. We can then assume
that for a circalar orbit, within the accepted degree of accuracy in the expansion of the
force function, wehave @2 =/ RS,

A comparison of the expression for the vector of the moment of gravitational forces
with the derived formulas leads to expressions allowing us to determine the modes of
regular precession which would satisfy all of the stated conditions
A;0 c08 Pyiiyy -+ 30 (45 — Ay) TagTyy = Hagg, Ay @ COSPy0y + 30 (4; — Ay) Tyt = Hogy

We shall now write the expressions for the variables of our problem which would cor~

respond to the three possible modes of regular precession of the gyrostat, by defining the
position of the carrier in the Koenig system of coordinates by the usual Euler angles

P1, Pg, and @3 .
First mode

%.z(AlwAs)mcoscpg-k
As

®; = O Sin @, Sin @, gy = Sin @, sin g, Ty = cOS P, Sin @y

®g = O Sin Qg €03 Py, Qgg == SIiD Py COS Pg, Tga = COS Py COS Py

®g = Qg -} © COSP,, Cgg ==COS Py, Tgg =-— Sin@,

@y = const, H = Ao cos ¢,

Ty == COSP;, Ty =-— sin gy, Tis =0, Ps =05t

Second mode
L 4 (Al_ As) o cos ¢g"" k
a —_—
A
© == @ Sin Qg SinQ3, Gy == SiNQ, 8inP;, Ty = COSPy
@y = © SinQ, CO8Q;, Uyy = SINQP; COSP;, Ty = — SING,
03 =@y T © C08Q;, a3y = COSP,, Tas =0

@3 = const, H == (4A4; — 3A43) & c0OS @, (i

Ty = — COSQ, SiNQPg, Tyy = — COSP, COSP;, Ty = SiNQy, Py = P5't
Third mode
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@, = 0, H = const
o, =0, oy = 0, Ty = sin@y, Ty = CO8Qy
0, =0, agy = 0, Tyy = COS Py, Ty = - 8in @,
03 = Q4 + @, a3 = 1, Kag =0, T3 =0

These modes of regular precession of a free gyrostat become, for k = 0, the modes of
regular precession of a single rigid bedy [3].

3. The Liapunov analysis of the stability of these modes of regular precession of a
gyrostat can be carried out by the method of Chetaev [4].

The problem considered here is essentially different from the general problem (see
equations {1.1) to (1.3)) of motion of a free gyrostat in a central Newtonian field of forces,
because of the assumption that in this case the motion of the system’s mass center is
Keplerian and its orbit circular. The equations of motion of the system consist of equations
(1.2), supplemented by the Poisson’s kinematic equations for the relative direction cosines.
The system of differential equations will be complete, as the inner gyrostatic motion is
defined by & = const. As the orbit is circular and the rotation of the maas center along it
is regular, we have, in addition to simple geometric integrals and equation Ag0; + k =
H = const, Jacobi type integrals [5].

In the general case, in which k == k (k,, ks, k3) , with the potential of intemal forces
denoted by @, and the constant angular velocity along the orbit of fixed radius of the
mass center of the gyrostat denoted by w, the Jacobi integral is of the form

1, (4,02 + 4,05 -+ 43057 + ko + kg + ko + Ty — 0 [(4;,0, + k) oy +
T (A30; + k) @gg + (4303 F k) ol = U+ @ + 4

where T is the kinetic energy of the gyrostatic elements in their motion relative to
carrier .Sg, and A is a constant energy.

Reverting to our problem, and noting that
Al = Ag #As, kl = k2 = Og ks == f o GOnSt, Aams + k = H, w? = H/Rs

we obtain (3.1)

A; (02 + o) + 4,08 — 20 [4; (0,05 + ©0) -+ Hagl + 302 (4; — A;) 12 = const

It can be easily ascertained that the derived expression is in fact the first integral
of the equations of motien.

For the analysis of stability of motion relative to the mass center it is convenient to
introduce the angular velocity, relative to the orbital coordinate system, with projections
@p; = O3 — OA3, Wpg == g — A3z, W3 == (03 — A3

Integral (3.1) will then have the form

Al (mrj,2 -+ mraz) + As(l),-32 + (A1 s A?-) m2a333 — 2wkogy + 302 (Ag — Al) ’l«'n' == const
also
Agag + Agwogg -+ k= H

The analysis of stability of the first mode of regular precession with respect to
variables ©;, ©,, g, Gg, and 7y;, will be made on the assumption that the orbital
velocity @, and the moment k remain unperturbed. Also, we assume that 1y, Ty, g,
and Ogy are cyclic.

For an unperturbed motion we have
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@y = Oy = 0, W5 = @' == const, Olgg = COS Qo Ty =0
In the case of a perturbed motion we shall denote these variables as follows
@1, Oy Oy = Q3 + 8, Gy =1cosPy+ 6, Ty
We write the first derived integrals of the equations of perturbed motion of the gyrostat
V= Ay (0% + 0pg?) 4 45e? + (4 — 43) 0202 + 302 (43 — 4)) 1,82 +
+ 2057458 4 2 (4; — Ay) 0% o8P0 — 20k = const
7y = A& -+ 4,00 = const

We shall consider the following expression as a Liapunov function

W =V, — 205V, ~+ MV, = 4; (0,2 + 0,% + (4, + 442 e -
+ [(4; — 4,) 02 4 L4700 8 -+ 224708 -+ 30 (4; — 4;) 1y

(3.2)

Here

A1 == const > A—il (1 — %) , Qs = (Ai — A“)“::OS Py — &

Function W will have all the properties required of a Liapunov’s function, when the
last conditions above are fulfilled. But A, can always be conveniently selected, and in the
case of the first mode, the condition for @3  is fulfilled by virtue of H == 4,0 cosg, ,
therefore, in accordance with Liapunov's theorem of stability, it is sufficient for the
latter existence of the latter to have 4, > A4, in the indicated group of variables.

We shall now consider the stability of the second mode. For unperturbed motions in
this mode we have
O = Oy = 0, @3 = @3, 053 = COSPy, Ty3 =0
For the perturbed mode we shall also assume that
O, Opy, O3 = Q3" + &, 03 = COSP; 8, Ty

Let us write the integral (3.1) in the following form 3.3)
3.3

Ay (0n® + 0,7 + 430,58 + 4 (4; — 4;) 0%ag? + 302 (4; — 4;) Tys® — 20kay; = const

Since for the second mode we have H = (44; — 34;) © C039Q,, therefore, the con-
sideration of the following expression as the Liapunov function

SN 4({A;—As) @ cos g, —V?2
—_— I — e
=t Ay (3.4)

= A1 (0,3 0,2) + Ase? + 4o? (4 — 43) 8+ 302 (4] — As) T3t

brings us to the immediate conclusion that for the second mode the sufficient condition
of stability is 4, > 4,.

For the third mode of unperturbed motion we have the following values of variables
mrl.:mr'z:()v Wpy = Pg, Tyg == 0, g3 = 1, 1.'23—-*-0
But this motion represents a particular case of the problem considered in [6]. There-
fore, if A; > A,, then the sufficient condition of stability is Ag@s > (4;— Ag) 0 — k. 1f,
however, 4, £ 4,, it is natural to use expression (3.4) as the Liapunov function with a
prior change of variables in (3.3) toe @y and 93, which in this mode have insignificant
values. We then arrive at

A3y > 4 (4; — Ao — &
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The conditions of stability of regular precession of a gyrostat established here

coincide with those obtained in [3] for the stability of a single rigid body.

3.

4.

5.
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