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This note deals with questions related to certain motions of a free gyrostat in a central 

Newtonian field of forces. 

Let 0 be the origin of a fixed Cartesian system of coordinates &, & and & at the center 

of gravitation, and let a moving system of coordinates zr, z, and x3, with nnit vectors 
it, i, , and i, , the axea of which coincide with the principal central axes offnartfa of the 

gyrostat, be rigidly attached to this gyrostat. Also, in the following we shall require, an 

orbital system of coordinates in the form of a trihsdron, defined by the position vector of 

the mass center of the system, and by the transversal and binormal to the orbit. The unit 
vectors of this system will be denoted by &, j, and j, . Finally, when analysing the motion 

of a mechanical system relative to the mass center, we shall always resort to the Koenig 
system of axes &‘, &‘and 6’. 

Let Al, A, and A, denote the principal central moments of inertia of the gyrostat 
assumed to be a rigid body, andlet M be its total mass. The moment of mom~t~ of the 

gyrostat, consisting of a carrier s and gyrostatic elements g ie, relative to 0, expressed 

by tll 
K, = RxMV + K, K=K1+k (R2 = @ + Ea2 + Es? 

Here R is the position vector of the system’s center of mass, V is its velocity, 
K is the moment of momentum of the gyrostat in its motions relative to the mass center, 
HI is the moment of momentum of the system considered as a single rigid body, and k is 
the moment of momenta relative to S. 

If wt. 0% and o, are the projections of the instantaneous angular velocity vector o 
of body S on the moving axes z, , z, and z, , then the projections of vector K, on the same 

axes will be A,w,, A,@* and A,&, . The projections of vector k will be denoted by k, , 

k, and ks. 

With the above notations the equations of motion of an arbitrary gyrostat, moving in 

a contra1 Newtonian field of forces defined by function U, will be 

da& i?U 
M-@-ET (i = 123) 

(1.1) 
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(1.2) 

(Aid, A,; k, k, ka; %@2 %: L1 L, U 

The remaining two equations in each of the above groups are obtained by a cyclic 

transposition of variables appearing in parantheses; L,, L, and L, denote the moments of 

Newtonian forces, acting on the system, relative the respective axes. 

We introduce the foIlowing notations for the direction cosines of the moving axes with 

respect to the fixed axes, and to the axes of the orbital coordinate system 

Xl =2 =s Sl *!? z.9 

E, ail al, al3 PI %l Zl% %S 

Ii: 

a21 a2, a23 Y2 %a1 %a %a 

a31 a, as Y3 Ql *3!2 %ss 

The cosines of the first group above are absolute, while those of the second one are 

relative, and satisfy the following expressions 

Tll = 
c;2 59 

all -$- + cl21 -jj- +aal~9 na = 
41 Ea 53 

a12 R + a28 R +a32 R 

41 
(1.3) 

ZIS= 413 R + rt2~ *+a*-$ 

For the force function we have the known expression [2] 

&+$- 
3 p A1+A?‘+& 

- -+i1Q‘+ A2Wi &1s21 + 3 $- 
(1.4) 

‘J 

Then, 

LI = 
+ 
-j+- A21 ZlSTl2 (Ar A2 Aa; ~1 ZP 71s) 

It remains to add to the system of equations (1.1) the Poissort’s kinematic equation, 

and the equations of relative motions, i.e. equations which define the mechanical aspects 
of motions of the gyrostatic elements g, and thus complete the system of equations dateb 
mining the motion of an arbitrary gyrostat in a central Newtonian field of forces. 

2. We shaI1 consider s gyrostat of the gyroscopic type, i.e. clack for which the central 
ellipsoid_of inertia is an ellipsoid of revolution. We denote by A, and A, its equatorial 
and axial moments ofinertia respectively. 

Let the inner motion be represented by a symmetric rotor, in steady rotation, the sxis 

of which is stationary with respect to the carrier S, snd is directed along the axis of 
symmetry of the gyrostat. There is no friction in the rotor bearings which exercise on its 
axis normal foroes only. 

In this,csse 

kl = ksl = 0, ka = k = con&, K = d,o& -I- dlr& -I- (A,o, i- k) i, 

The gravitational moment, created by the field, relative to the mass center is ex- 
pressed by 

L (G.4, &+I = f (Aa - -41) TXS (51 x is) (2. I) 

The expression ‘regulu precession’ of a free gyrostat will be used here to describe a motion h 

which the carrier rotatsu with a constant angular velocity about the axis of symmetry rS 
of the gyrostat, rotates with a constant angslar about another 



706 N.N. Kolesnikow 

axis &‘, passing through the center of tbe mass system, and having a fixed position in 

space. 

It can be shown that the moment L of external forces, provided it is not zero, and 

under the condition that the gyrostat of the described kind is subject to regular precession, 

must have the form 

L=(B- A, o* CO% 9%) Q)* x i, (H = A, (cps + o* coscp,) + k = eonst) (2.2) 

The integral H follows immediately from the third equation of the system (1.2) ; o* is 
the angular velocity of precession, ps’ is the inherent angular velocity of the carrier, and 
qa is the angle between axis & ‘and the axis of symmetry, with COS(P, = ua3. 

It is not difficult to conclude that the motion defined above must take place on a 
&c&r orbit, and that the angnlar velocity CO* of precession must coincide with the angular 
velocity of the mass tauter along the orbit. 

The atipulated expression for the force function U yields a non-Keplerian value of the 
angular velocity, However, in the following we shall assume the mass center of the gyrostat 
is moving along a Keplerian orbit, defined by (1.1). provided that the terms dependent on 
the position of the body relative to the mass center are neglected. We can then assume 
that for a circular orbit, within the accepted degree of accuracy in the expansion of the 

force function, we have 0% = p / ~a. 

A comparison of the expression for the vector of the moment of gravitational forces 
with the derived formulas leads to expressions allowing us to determine the modes of 
regnlar preosssion which would satisfy all of the stated conditions 

A,@ costpsawf 30 (4 y Al) %%= Husl, A, o coscp,cr,l 4- 30 (4 - 4 %%l - a% 

We shall now write the expressions for the variables of our problem which would COP 

respond to the three possible modes of regular precession of the gyrostat, by defining the 
position of the carrier in the Koenig system of coordinates by the usaal Euler angles 

~9 9at and ‘Pa - 

First mode 

cpa = const , H = A+I cos qa, ~.=(AL-As)Mw--~ 
AS 

ml = 0 Sin ‘ps an ‘ps, as1 = sin qa sm ‘ps, ral - coscp, sin [Pa 

cop = 0 sm fqs co9 ‘p3, asa = sin qn co9 ‘ps, zss = co9 9% cos ‘ps 

zsa = a’+ co co9 spsr aSs =cos fpat %a$ =- sinq, 

%I = cos % Zl, = - sin rp,, %s = 0, ‘pa = tps’t 

Second mode 

q.$ = const, H = (4A1- 3Aa) o cos pa, %I’ = 
4 (Al- AS) OI cos q&,- k 

A8 
ol = 0 sincp, sincp,, ql = sincp, ~incp,, %l = COSTa 

% = @ SinQ CoS(ps, a, = Sincp, cosq*, r,, = - sinpa 

os = 9; + w coscp,, a, = cosq,, z,, = 0 

51 = - cosp, sin%, rls = - costp, COS(P~, r,, = sincp,, 'ps = Ip;t 

Third mode 
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f-P!2 = 0, H = con& 

01 = 0, aal = 0, Ttl = sincp,, %l = cos cpe 
w*= 0, og8 = 0, z 22 = COS(P3r zla = - sirtipS 

03=(P3'+%a33= 1, R - 0, 23 - %3 = 0 

These modes of regular precession of a free gyrostat become, for k = 0, the modes of 

regular precession of a single rigid body [3]. 

3. The Liaponov analysis of the stability of these modes of regular precession of a 

gyrostat can be carried out by the method of Chetaev [4]. 

The problem considered here is essentially different from the general problem (see 

equations (1.1) to (1.3)) of motion of a free gyrostat in a central Newtonian field of forces, 
because of the assumption that in this case the motion of the system’s mass center is 

Keplerian andits orbit circular. The equations of motion of the system consist of equations 
(1,2), supplemented by the Poisson’s kinematic equations for the relative direction cosines. 

The system of differential equations will be complete, tts the inner gyrostatic motion is 

defined by k = const. As the orbit is circular and the rotation of the mass center along it 

is regnlar, we have, in addition to simple geometric integrals and equation A303 i- k = 

H = const, Jacobi type integrals [s]. 

In the general case* in which k = k (k 1, I, 3 , with the potential of internal forces k k ) 

denoted by a, and the constant angular velocity along the orbit of fixed radius of the 

mass center of the gyrostat denoted by w, the Jacobi integral is of the form 

where T 
carrier s 

is the kinetic energy of the gyrostatic elements in their motion relative to 
and h is a constant energy. 

Reverting to our problem, and noting that 

A, = A, #A,, kl = k, = 0, ks = k = const, A,o, + k = ff, Oa = y/R3 

we obtain 
(3.1) 

Al (01~ f oaBf 4 A& - 2w [A, (opet + o$z,) + Ha331 + 3ma (A, - A,) tl,* = const 

It can be easily ascertained that the derived expression is in fact the first integral 
of the eqnations of motion. 

For the analysis of stability of motion relative to the mass center it is convenient to 

introduce the angular velocity, relative to the orbital coordinate system, with projections 

or, = 01 - oa31, mra = 02 - (9332, qS=W3--Wa3a 

Integral (3.1) will then have the form 

At (o.Q + orre) + A36+s* + (A, - A,) oea33a - holm3, + 30% (A3 - AI) ZU* * Cow.4 

l&40 

Aso, + Asma + k = H 

The analysis of stability of the first mode of regular precession with respect to 
variables orl, ~,.r, @rs, a,, and %x3, will be made on the assumption that the orbital 
velocity o, and the moment k remain unperturbed. Also, we assume that Q, z,,, a,,, 
and ~$8 are cyclic. 

For an unperturbed motion we have 
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w I.1 = %2 = 0, %3 = (p'3 = const, cY33= cosqh, "cl3 = 0 

In the case of a perturbed motion we shall denote these variables as follows 

%lr %v aI.3 = v,' + E, a33 = coscp, + 6, z13 

We write the first derived integrals of the equations of perturbed motion of the gyrostat 

VI = A, (orplz i- or& $ A,eZ $- (A, - A3) 02h2 + 30~ (A3 - A,) z13a + 

$_ 2qi-Q -b 2 (A, - A3) o2 cosq3,6 - 2mk6 = const 

Va = A$ + A,wS = const 

We shall consider the following expression as a Liapunov function 

w = V, - 2rp;v, -t &V%2 = A, (c@ + o,.,~) + (Aa -f- &AZ) E’ + 

+ [(A, - A3) o2 + h,A,2m2] e2 -+ h&‘&hE8 f 30” (A, - A,) $2 

Here 

(3.2) 

hi = co& > + (1 - $ 
(~l--~a)~coscp~--k , (p3' = 

A3 

Function W will have all the properties required of a Liapunov’s function, when the 

last conditions above are fulfilled. But XI can always be conveniently selected, and in the 

case of the first mode, the condition for ‘ps’ is fulfilled by virtue of H = Ap coscp, I 
therefore, in accordance with Liapunods theorem of stability, it is sufficient for the 

latter existence of the latter to have A, > At in the indicated group of variables. 

We shall now consider the stability of the second mode. For unperturbed motions in 

this mode we have 

or1 = or2 = 0, wra =ipa‘, ass = coscp,, zt3 = 0 

For the perturbed mode we shall also assume that 

%lV %29 w-3 =:pli+~, a,,=coscp,+6, rz3 

Let us write the integral (3.1) in the following form 
(3.3) 

Al (w,,~ + 61~~~) + A,@,,2 + 4 (A, - A& 02a32 + 30~ (AA, - AZ) $2 - %dka3, = ConSt 

Since for the second mode we have N = (4-41 - 3-4,) 0 COS(P2, therefore, the con- 

sideration of the following expression as the Liapunov fnnction 

II’ = 1.‘1-.- 2 4(.41---As)o eos cp2 -V" _= 

A3 (3.4) 

=bfw,;f 0,2,~+A3~2+40~(Al-A3)~~+ 30” (A,- A3)rz3a 

brings us to the immediate conclusion that for the second mode the sufficient condition 

of stability is A, > -4,. 

For the third mode of unperturbed motion we have the following values of variables 

w rl = ora = 0, %3 = UP3 f T13 = 0, a33 = 1, r2a = 0 

But this motion represents a particular case of the problem considered in [6]. There- 

fore, if A, > A,, then the sufficient condition of stability is &pi > (A,-- As) o - k. If, 

however, A, < A,, it is natural to use expression (3.4) as the Lfapunov function with a 

prior change of variables in (3.3) to ~31 and r3er which in this mode have insi~ific~t 

values. We then arrfve at 

A39?3'> 4(A,- .43)w-- k 
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The conditions of stability of reguiar precession of a gyrostat established here 

coincide with those obtained in [3] for the stability of a single rigid body. 
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